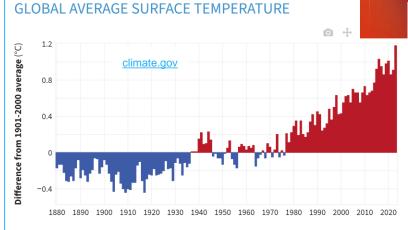
HELMHOLTZ Energy

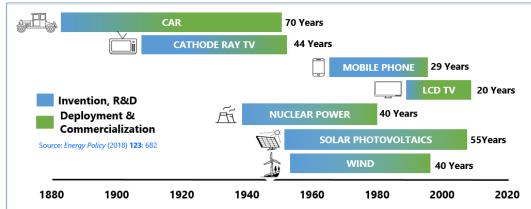
The Research Field Energy in Helmholtz.


Mission Innovation: Materials for Energy -M4E Holger Ihssen

M- ERA-net Meeting in Paris

17.09.2024

Global Drivers


- Climate change mitigation
- Sustainability and circularity
- Economic resilience
- Geopolitical context

Year

Materials Innovation Cycles take Decades

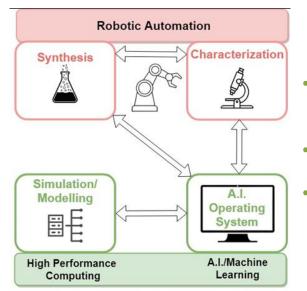
Advanced Materials for Industrial Leadership

CHALLENGES TO BE ADDRESSED

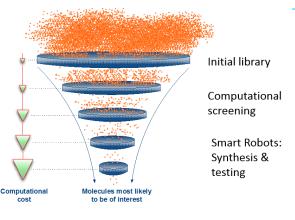
- Long innovation processes and an insufficient level of digitalisation
- A lack of testing and experimentation facilities
- Fragmentation of the R&I ecosystem
- Increasing circularity and material efficiency needs
- Disconnect between innovative research and uptake in industry
- A lack of skills
- Increasing private investment needs
- Need for harmonised standards

Communication

- <u>Mission Innovation</u> (MI) was launched during COP21 under the United Nations Framework Convention on Climate Change, UN FCCC, 2015
- The <u>Clean Energy Materials Innovation Challenge</u>, IC6, was 1 of 8 innovation challenges to address climate change under MI, 2017
- IC6 became Materials for Energy, M4E, under the second MI mandate, 2021
 - M4E has the objective to accelerate energy materials innovation through Materials Acceleration Platforms (MAPs) self-driving materials laboratories


ME4 has 3 Co-leads:

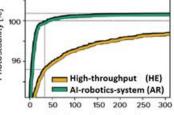
Materials Acceleration Platforms Self-Driving/Autonomous Materials Laboratories


ACCELERATION >10X

- <u>Closed-loop</u> characterization, synthesis and experimental planning
- Smart robotic automation
- Accelerated simulation/modeling through <u>artificial intelligence</u>

 Develop novel <u>materials and</u> <u>devices</u>

AMANDA



- Autonomous Materials and Device Application Platform
 - Optimization of OPV light stability

S. Langner, et al., Beyond	æ
Fernary OPV: High-	₹ <u>i</u>
Throughput Experimenta	lide
and Self-Driving	ost
Laboratories Optimize Mu	hot
Component Systems. (20	ā
arXiv:1909.03511	

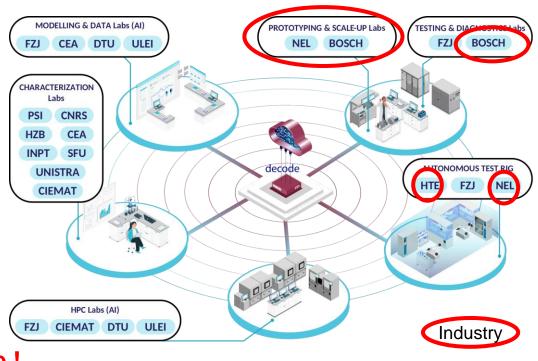
	HE	AR	Advantages
Samples	1022	30	34 x faster
Throughput	2 blends/week	9 blends/week	4.5 x faster
	ca. 15 mg material	ca. 0.9 mg material	16.7 x material
	ca. 100 ml solvent	ca. 6 ml solvent	savings

Number of experiments

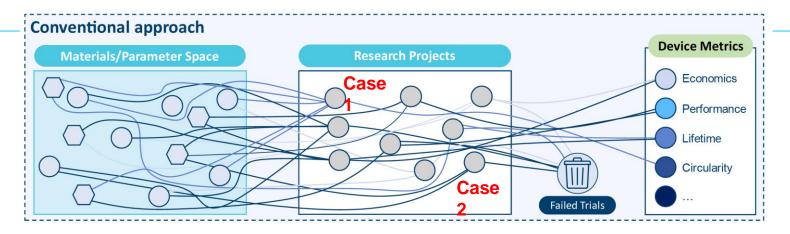
- 5-year bilateral collaborative project (2021-26)
- Ongoing impactful materials science to push key technologies discovery to scale-up, across 5 work packages
 - Electrolysers for H2 production and CO2 conversion
 - Education & Training
- Focus on accelerated materials discovery and development as imagined in the Clean Energy Materials Innovation Challenge of Mission Innovation
- GCMAC initiated several new MAP activities in academia and industry

Natural Resources Canada

Community Publication on MAPs is Discussing

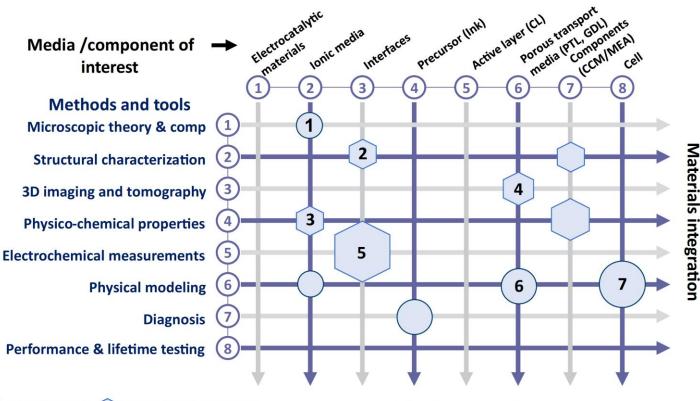

- Advantages of MAPs
 - Closed loop and FAIR data => Also process information is stored.
 => All results are reproducible.
 - Decentralized and modular => Allows a global community to contribute.
 => A complete new way of research and innovation management.
- List many research projects and initiatves
- Academic and industry research frameworks
- Building blocks // hardware, software, protocols, interfaces, HPC and community
- Impact
- Gaps
 - Compatible infrastructure, data structures and sharing
 - Standardized software for distributed MAPs
 - Make existing labs "MAP" ready
 - Education & Training
 - IP ownership

https://onlinelibrary.wiley.com/doi/10.1002/adma.202407791



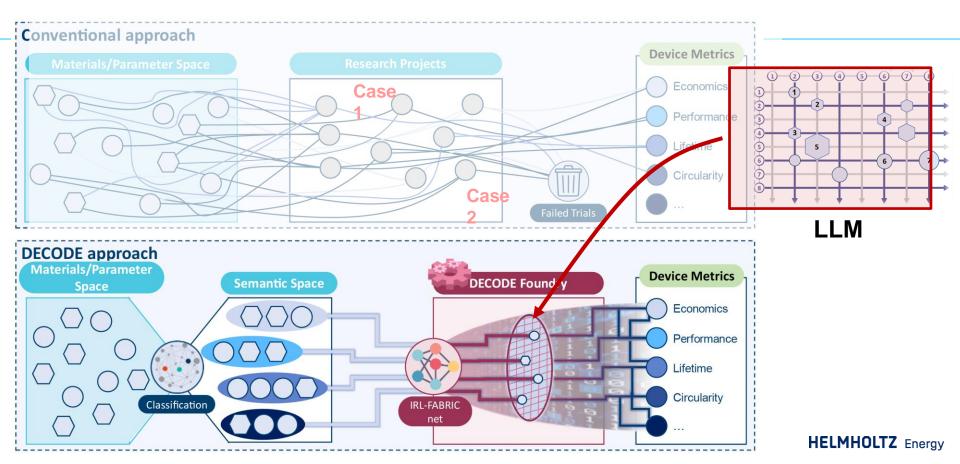
The next Step : The DECODE project

- DECODE aspires to revolutionize the process, by which materials for clean energy technologies are developed, integrated, and assessed.
- DECODEs main focus is on PEM electrolysers.
- Computing infrastructure, RI and TRI are needed
- Industry is of key importance !



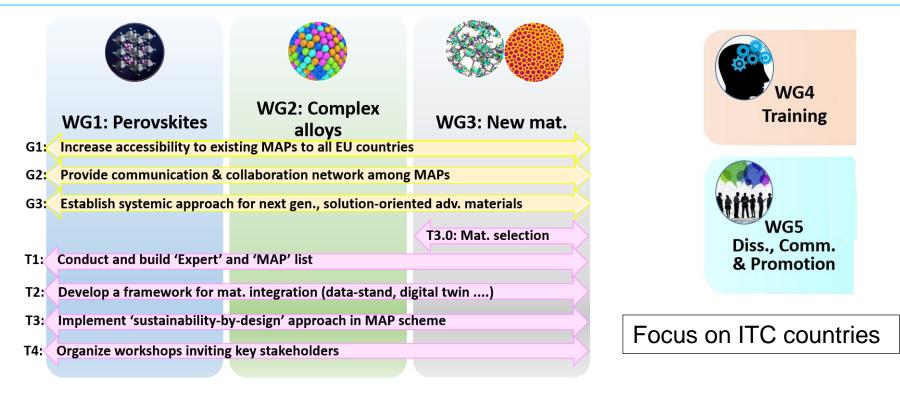
From Conventional Approach ...

How to not get lost in integration and scale-up?



Develop and implement an orchestrated process

Modelling tool 🚺 Characterisation method


Adaptive methods

From Conventional Approach to DECODE

Network Development I

COST Project : European Materials Acceleration Center for Energy

Network Development II RISEnergy : Research Infrastructure Services for Renewable Energy

84 Research infrastructures from 69 Institutions

• in 8 renewable Energy Technologies and 2 Cross-Cutting areas.

Consortium:

• 17 Partner, 37 Affiliated Entities und 15 Subcontractors

Energy technologies:

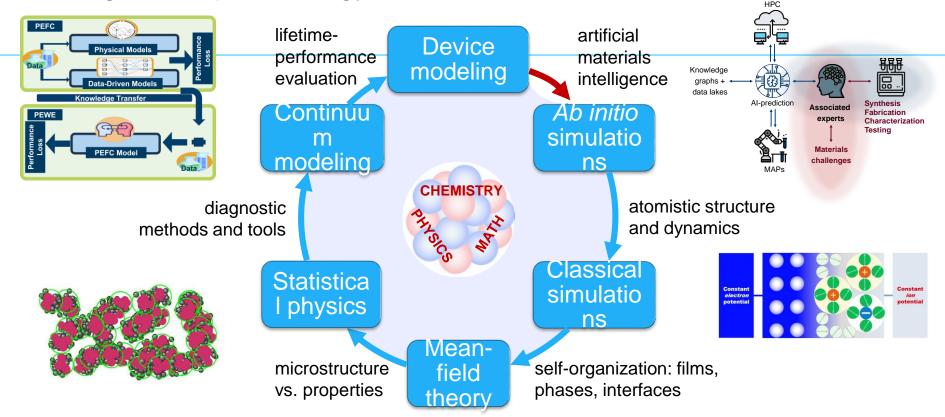
• photovoltaics (PV), concentrated solar power/solar thermal energy (CSP/STE), hydrogen, biofuels, offshore wind, ocean energy (waves and tides), integrated grids and energy storage,

Cross technology areas:

- materials research
- information and communication technologies

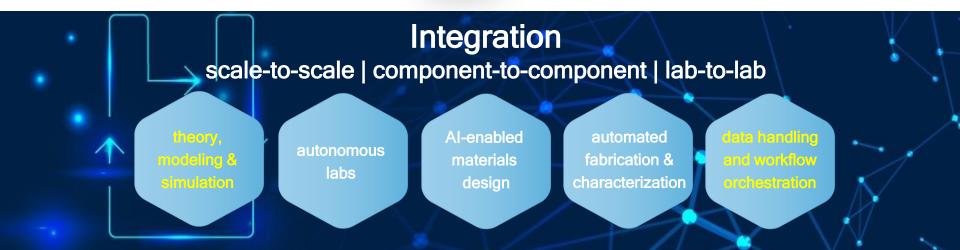
Budget: 14,5 M€, 2/3 on transnational and virtual access

Homepage - (risenergy-project.eu)



Thank You for Listening

Closing the loop on energy materials


Michael Eikerling, IEK-13: Theory and Computation of Energy Materials

m.eikerling@fz-juelich.de

Acceleration: where and how?

Diverse Energy Materials of Interest

- Organic thin films: hole transport materials (organic solar cells)
- High temp materials: thermoelectric materials, high entropy alloys, etc.
- Electrocatalysts, electrolysers: O₂, H₂ production and CO₂ conversion
- Batteries: Lithium and alternative formulations
- Thermal storage: phase change materials / thermochemical materials
- Additive manufacturing: metal powder/wire 3D printing
- Structural materials: aluminum, steel cement and concrete
- Traditional electrochemistry: Corrosion/Electroplating
- Thin Film PVD: multi-metal target systems
- Magnetic materials: Neodymium replacements
- Structural joining: welding, brazing, soldering, adhesives